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ABstrAct
Chemotherapeutic drug therapy in cancer is seriously hampered by severe toxicity 

primarily due to indiscriminate drug distribution and consequent collateral damage to 
normal cells. Molecularly targeted drugs such as cell cycle inhibitors are being developed 
to achieve a higher degree of tumor cell specificity and reduce toxic side effects. 
Unfortunately, relative to the cytotoxics, many of the molecularly targeted drugs are less 
potent and the target protein is expressed only at certain stages of the cell cycle thus 
necessitating regimens like continuous infusion therapy to arrest a significant number 
of tumor cells in a heterogeneous tumor mass. Here we discuss targeted drug delivery 
nanovectors and a recently reported bacterially‑derived 400 nm sized minicell that can 
be packaged with therapeutically significant concentrations of chemotherapeutic drugs, 
targeted to tumor cell surface receptors and effect intracellular drug delivery with highly 
significant anti‑tumor effects in vivo. We also report that molecularly targeted drugs can 
also be packaged in minicells and targeted to tumor cells with highly significant tumor 
growth‑inhibition and regression in mouse xenografts despite administration of minute 
amounts of drug. This targeted intracellular drug delivery may overcome many of the 
hurdles associated with the delivery of cytotoxic and molecularly targeted drugs.

PriNciPLe APProAcHes to iMProve tHe tHerAPeutic iNDex 
of ANti-cANcer Drugs

Current	 chemotherapeutic	 drugs	 are	 constrained	 by	 severe	 systemic	 toxicity	 due	 to	
indiscriminate	 drug	 distribution	 and	 narrow	 therapeutic	 indices.	 Dose-limiting	 toxicity,	
rapid	clearance	necessitating	frequent	administration	of	high	doses	of	chemotherapeutics,	
and	drug	resistance	prevents	a	satisfactory	clinical	response.�	Consequently	over	the	past	
decade	a	significant	global	effort	has	focused	on	the	discovery	and	development	of	molecularly	
targeted	drugs.

For	 example,	 many	 tumor-associated	 mutations	 result	 in	 the	 abnormal	 regulation	 of	
protein	 kinases	 involved	 in	 progression	 through	 the	 cell	 division	 cycle.	 The	 cyclin-de-
pendent	 kinase	 (CDK)	 family	 has	 received	 special	 attention	due	 to	 their	 central	 role	 in	
cell	proliferation	and	upregulation	in	many	human	cancers.	A	plethora	of	small-molecule	
CDK	 inhibitors	 have	 been	 characterized	 and	 some	 of	 them	 are	 currently	 in	 clinical	
development.2,3	Other	serine-threonine	protein	kinases	such	as	the	Aurora	proteins	(mostly	
Aurora	A	and	B)	or	Polo-like	kinases	(Plk�)	are	also	receiving	increased	attention	as	putative	
cancer	targets.4-7

Another	 approach	 to	 reduce	 collateral	 damage	 to	 normal	 cells	 is	 to	 encapsulate	 the	
chemotherapeutic	 drug	 in	 a	 nanovector	 and	 target	 it	 to	 the	 tumor	 microenvironment.	
This	approach	is	exemplified	by	Doxil	(doxorubicin	encapsulated	in	pegylated	liposomes:	
Doxil,	 Alza	 Pharmaceuticals;	 Caelyx,	 Schering-Plough).8,9	 These	 formulations	 have	 a	
long	 circulation	 time,	 and	 the	 liposomes	 eventually	 extravasate	 through	 the	 abnormally	
permeable	 vessels	 (passive	 targeting)	 characteristic	 of	 many	 tumors	 and	 accumulate	 in	
tumor	tissue	due	to	the	poor	lymphatic	drainage.	This	phenomenon	is	termed	the	enhanced	
permeation	and	retention	effect	(EPR)�0,��	and	is	a	consequence	of	the	dysregulated	nature	
of	 tumor	 angiogenesis,	 resulting	 in	 endothelial	 fenestrations	 and	 hyperpermeability.	
Nanovector-based	passive	targeting	of	tumor	interstitium	is	thought	to	occur	via	convective	
and	diffusive	transport	within	the	vasculature.�2

Once	concentrated	in	the	tumors,	the	liposomes	breakdown	and	deliver	high	concen-
trations	of	 the	drug	 to	 the	 tumor.	However,	despite	 the	 significant	 reduction	 in	 toxicity	
compared	 to	 free	 drug	 administration,	 pegylated	 liposomes	 still	 suffer	 from	 side	 effects	
such	as	skin	toxicity	including	hand-foot	syndrome	and	mucositis,�3-�5	myelosuppression	
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and	 myocardial	 damage.�6	 Other	 nanovector	 systems	 include	
synthetic	biodegradable	nanoparticles,�2,�7	polymer	micelles�8,�9	and	
several	others.20	However,	 these	 technologies	 are	 also	hampered	by	
shortcomings,	such	as	drug	leakage	in	vivo,	lack	of	versatility	in	terms	
of	 packaging	 a	 diverse	 range	 of	 different	 drugs	 without	 significant	
derivatization,	 thereby	 reducing	 drug	 potency,	 and	 difficulties	 in	
production	scale-up,	particularly	for	nanoparticles.

A	 third	 approach	 is	 to	 encapsulate	 a	 drug	 in	 a	 nanovector	 and	
target	the	package	intracellularly	within	tumor	cells.	Active	targeting	
requires	a	ligand	on	the	vector	directed	against	a	receptor	at	the	tumor	
cell	surface.	The	ligand-receptor	interaction	results	in	endocytosis	of	
the	nanovector	and	 intracellular	 release	of	 the	drug.	This	approach	
potentially	avoids	the	toxic	side	effects	of	non-targeted	drug	carriers	
and	 achieves	 a	 higher	 concentration	 of	 drug	 within	 cancer	 cells	
resulting	in	a	significant	improvement	in	the	therapeutic	index.	Such	
a	 strategy	has	been	explored	 for	a	number	of	different	nanovectors	
such	as	immunoliposomes,2�-26	polymeric	nanoparticles,27-30	immu-
nomicelles3�	 and	 nanoparticle-aptamer	 bioconjugates.32	 A	 number	
of	 different	 over-expressed	 tumor	 cell-surface	 receptors	 have	 been	
utilized	for	nanovector	targeting	such	as	EGFR,33	HER2/neu,34	folic	
acid,35-40	asialoglycoprotein,4�	prostate	specific	membrane	antigen,42	
transferrin43,44	and	others.

BActeriALLy-DeriveD MiNiceLLs for tArgeteD DeLivery 
of cHeMotHerAPeutic Drugs

We	 recently	 described	 another	 approach	 for	 targeted	 and	
intracellular	 delivery	 of	 chemotherapeutic	 drugs.45	 The	 approach	
relies	 on	 using	 a	 bacterially-derived	 minicell	 to	 package	 chemo-
therapeutic	 drugs	 and	 target	 them	 to	 tumor	 cells	 in	 vivo	 via	
bispecific	antibodies	where	one	arm	of	the	antibody	attaches	to	the	
O-polysaccharide	component	of	the	lipopolysaccharide	(LPS)	found	
on	 the	 minicell	 surface	 and	 the	 other	 arm	 can	 be	 directed	 to	 any	
tumor	cell-surface	receptor.

Minicells	were	first	observed	and	described	by	Howard	Adler	and	
colleagues	in	�967,	who	also	coined	the	term	“minicell”.46	They	are	
anucleate,	non-living	nano-sized	cells	(400	nm	in	diameter)	and	are	
produced	as	a	result	of	mutations	in	genes	that	control	normal	bacterial	
cell	 division47-49	 thereby	 de-repressing	 polar	 sites	 of	 cell	 fission.	
To	more	accurately	describe	 the	particle,	we	propose	 the	new	term	
“nanocell”	instead	of	“minicell”	since	the	size	of	the	vector	is	400	nm	
and	is	not	in	the	mini-	or	micro-range.

It	was	demonstrated	that	a	range	of	chemotherapeutic	drugs	with	
differing	structure,	charge,	hydrophobicity	and	solubility	such	as	doxo-
rubicin,	 paclitaxel,	 irinotecan,	 5-fluorouracil,	 cisplatin,	 carboplatin	
and	 vinblastine,	 could	 be	 readily	 packaged	 within	 the	 minicells.45	
Interestingly,	 the	 method	 of	 drug	 packaging	 was	 as	 simple	 as	
coincubating	 minicells	 with	 each	 drug	 for	 as	 little	 as	 2	 hrs.	
Hydrophobic	 drugs	 required	 small	 concentrations	 of	 cosolvents	 in	
the	incubation	reaction	to	ensure	that	the	drug	remained	in	solution	
during	 coincubation	 with	 minicells.	 The	 functional	 integrity	 of	
minicells	was	not	compromised	with	the	use	of	small	concentrations	
of	 solvents	 like	 DMSO,	 Cremophor	 or	 ethanol.	 The	 solvent	 was	
then	 easily	 washed	 away	 prior	 to	 attaching	 bispecific	 antibodies	
to	 drug-packaged	 minicells.	 The	 drug-packaged	 minicells	 did	 not	
leak	 drug	 when	 incubated	 in	 buffer	 or	 serum	 for	 over	 24	 hrs.	
Drug-packaging	 in	 minicells	 was	 shown	 to	 be	 dependent	 on	 both	
the	 concentration	 of	 drug	 in	 the	 loading	 solution,	 and	 time	 of	
incubation.45	Drug	loading	of	minicells	possibly	occurs	by	diffusion	
down	 a	 concentration	 gradient	 with	 entry	 via	 non-specific	 porin	

channels50	 in	 the	 outer	 membrane.	 Detailed	 studies	 of	 porins	
have	 revealed	 charged	 residues	 within	 the	 channels	 resulting	 in	 a	
transversal	 electric	 field	 that	 separates	 polar	 and	 non-polar	 solutes.	
Polar	 solutes	are	 thought	 to	be	oriented	 in	 the	 field	during	perme-
ation	 which	 therefore	 becomes	 a	 fast	 one-dimensional	 diffusion	
process.5�	 Nonspecific	 diffusion	 of	 hydrophobic	 solutes	 across	 the	
outer	membrane	is	thought	to	occur	through	other	channels	such	as	
the	FadL	family	of	outer	membrane	proteins52,53	and	OmpW.54	In	
addition	to	providing	a	barrier	to	solute	entry,	bacterial	membranes	
contain	a	plethora	of	transport	proteins	involved	in	exporting	solutes	
across	their	phospholipid	bilayer-membranes,	against	a	concentration	
gradient.55	 Thus,	 retention	 of	 drug	 in	 minicells,	 after	 loading,	 is	
possibly	due	to	the	metabolic	 inactivity	that	results	 from	their	 lack	
of	bacterial	genome.

coNceNtrAtioN of cHeMotHerAPeutic Drugs PAcKAgeD 
iN MiNiceLLs

It	 was	 discovered	 that	 an unprecedented concentration ofan	 unprecedented	 concentration	 of	
�	 million	 to	 �0	 million	 drug	 molecules	 can	 be	 packaged	 within	 a	
minicell.45	 In	 contrast,	 other	 nanovectors	 such	 as	 liposomes	 have	
been	shown	to	package	~�0,000	molecules	of	drug	within	each	lipo-
some.56	Similarly,	armed	antibodies	can	conjugate	only	 four	to	ten	
drug	 molecules	 per	 antibody.	The	 potency	 of	 observed	 anti-tumor	
effects45	may	depend	on	the	concentration	of	a	drug	that	is	delivered	
intracellularly	within	cancer	cells.

PAssive AND Active tArgetiNg of Drug-PAcKAgeD 
MiNiceLLs to tuMor ceLLs iN vivo

The	 biodistribution	 of	 i.v.	 administered	 �25I-labeled-minicells	
in	 nude	 mice	 with	 EGFR	 over-expressing	 breast	 cancer	 xenografts	
revealed	that	at	2	hrs	post-treatment	~30%	of	the	EGFRminicells	were	
localized	in	the	tumor.45

This	rapid	appearance	of	EGFRminicells	within	the	tumor	micro-
environment	 suggests	 extravasation	 of	 EGFRminicells	 from	 the	
circulation	 due	 to	 the	 tumor-associated	 leaky	 vasculature.	There	 is	
considerable	debate	regarding	the	pore	size	or	fenestrations	associated	
with	 abnormal	 tumor	 vasculature	 and	 the	 size	 limitation	 of	 a	
nanovector	to	enable	passive	targeting.	For	example,	some	of	the	data	
suggests	pore	cutoff	size	ranging	from	200	nm	to	�.2	mm,57	or	from	
�00	nm	to	780	nm,58	or	from	�00	nm	to	2	mm	depending	on	the	
tumor	type,	malignancy,	and	stage	of	the	disease.59	Apart	from	size,	
extravasation	of	nanovectors	into	the	tumor	interstitium	relies	on	a	
large	number	of	physical	 factors	 and	 this	has	been	described	 in	 an	
excellent	review	(ref.	60).

Following	passive	 targeting,	 the	BsAb-targeted	minicells	 achieve	
active	targeting	of	the	tumor	cells	via	receptor	engagement,	endocy-
tosis,	 intracellular	breakdown	of	drug-packaged	minicells	 and	drug	
delivery.45

Biodistribution	 studies	 in	 tumor-bearing	 mice	 showed	 that	
within	6	hrs	post-i.v.	 administration	of	EGFRminicellsDox,	~30%	of	
the	 injected	dose	of	Dox	was	 found	 in	 the	 tumor.45	Thus targetedThus	 targeted	
minicell	 delivery	 provides	 at	 least	 a	 30-fold	 enrichment	 in	 tumor	
drug	delivery.

BsAb	 linkage	 to	 the	 surface	 of	 minicells	 via	 the	 cell-surface	
exposed	 O-polysaccharide	 is	 extremely	 robust;	 a	 factor	 that	 likely	
accounts,	in	part,	for	the	efficiency	of	this	cell-targeting	approach.	As	
a	consequence,	targeted	minicell-mediated	drug-delivery	was	shown	
to	result	in	highly	significant	inhibition	and	even	regression	of	tumor	
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growth	in	vivo,	in	mice	with	either	human	breast,	ovarian,	leukemia	
and	lung	cancer	xenografts.45	Interestingly,	these	potent	anti-tumor	
effects	 were	 achieved	 with	 the	 delivery	 of	 amounts	 of	 drug	 that	
are	markedly	 smaller	 than	 those	 required	with	 systemic	delivery	of	
free	 drug.	 For	 example,	 highly	 significant	 anti-tumor	 effects	 were	
observed	with	~�,875-fold	and	~8,000-fold	 lower	amounts	of	Dox	
and	Pac	respectively,	delivered	to	xenografts	via	minicells	compared	
with	the	respective	free	drugs.45

Although	 it	 has	 been	 shown	 that	 the	 abnormal	 tumor	 micro-	
environment	 is	 characterized	 by	 interstitial	 hypertension,	 and	
that	 this	 phenomenon	 may	 limit	 access	 of	 anti-cancer	 antibody	
therapeutics,	 this	does	not	appear	 to	be	an	absolute	barrier	at	 least	
in	 the	 rodent	 xenograft	model	 as	 is	 exemplified	by	minicells	 (both	
in	 mouse	 xenografts	 and	 in	 dogs	 diagnosed	 with	 non-Hodgkin’s	
lymphoma),45	 immunoliposomes6�	 and	 antibody	 conjugated	 to	
Quantum	Dots.62

tArgeteD MiNiceLL-MeDiAteD Drug DeLivery 
iN Dogs WitH NoN-HoDgKiN’s LyMPHoMA

Rapid	tumor	regression	was	evident	in	two	dogs	diagnosed	with	
advanced	(stage	IV)	T-cell	non-Hodgkin’s	 lymphoma	(NHL)	when	
treated	 i.v.	with	anti-canine-CD3	targeted	minicellsDox.

45	One	dog	
(4	 kg)	 received	 a	 total	 of	 five	 doses	 over	 35	 days,	 and	 the	 other	
(40	kg),	seven	doses	over	48	days	providing	an	average	of	4.8	mg	and	
83.4	 mg	 of	 Dox	 per	 dose	 respectively.	 Interestingly,	 conventional	
chemotherapy	 in	 these	 dogs	 would	 require	 the	 administration	 of	
8,470	mg	and	39,300	mg	of	Dox	per	dose	respectively	(30	mg/m2)	as	
part	of	multi-drug	combination	chemotherapy.	Thus	the	treatment	
with	CD3minicellsDox	required	�,764-	and	47�-fold	less	Dox	per	dose	
respectively,	to	achieve	highly	significant	tumor	regression.

tArgeteD DeLivery of MoLecuLArLy tArgeteD Drugs 
to tuMor ceLLs viA tHe MiNiceLL vector

While	many	of	the	drugs	being	developed	against	molecular	targets	
appear	 promising	 as	 anticancer	 drugs,	 several	 such	 candidates	 are	
faced	 with	 some	 serious	 hurdles	 such	 as	 low	 pK	 and	 potency63	
which	 necessitates	 high	 drug	 doses	 to	 achieve	 a	 therapeutic	 effect.	
This	 results	 in	 dose	 limiting	 toxicities.	 Many	 of	 the	 inhibitors	 of	
molecular	targets	are	also	found	to	be	reversible.	Absence	of	covalent	
binding	to	the	molecular	target	may	result	in	weak	activity	and	again	
necessitates	 high	 drug	 dosing	 to	 achieve	 therapeutic	 effect.	
Additionally,	some	of	the	targets	only	appear	at	certain	stages	of	the	
cell	cycle	and	since	the	tumor	cells	in	a	patient	are	a	heterogeneous	
population,	such	drugs	would	require	dosing	for	prolonged	periods	
of	time	e.g.,	continuous	infusion,64	in	order	to	ensure	that	the	plasma	
drug	 concentration	 is	 maintained	 over	 a	 sufficient	 period	 of	 time	
to	 catch	 cancer	 cells	 when	 the	 target	 molecule	 is	 expressed.	 Such	
a	 regimen	of	 treatment	may	 result	 in	 serious	 toxic	 side	 effects	 and	
development	of	drug	resistance.

The	kinesin	spindle	protein	(KSP),	also	termed	kinesin-5	or	Eg5,	
is	a	microtubule	motor	protein	that	is	essential	for	the	formation	of	
bipolar	spindles	and	the	proper	segregation	of	sister	chromatids	during	
mitosis.65,66	 Inhibitors	of	KSP,	 like	monastrol,	cause	 the	 formation	
of	monopolar	mitotic	spindles,	activates	the	spindle	assembly	check-
point,	 and	 arrests	 cells	 at	 mitosis,	 which	 leads	 to	 subsequent	 cell	
death.65,67-70	Several	structurally	unrelated	chemical	compounds	that	
function	 as	mitotic	 inhibitors	have	been	 identified7�-74	 and	 several	
are	 in	clinical	 studies.	Monastrol,	 the	 first	Eg5	 inhibitor	 identified,	

induces	 mitotic	 arrest	 without	 affecting	 interphase	 microtubules,	
and	has	been	a	useful	tool	for	dissecting	the	mechanisms	underlying	
spindle	assembly.	However,	its	clinical	potential	is	limited	because	of	
its	weak	Eg5	inhibitory	activity	(IC50,	�4	mm).67

In	 order	 to	 determine	 whether	 a	 targeted	 minicell	 vector	 could	
package	 and	 enhance	 the	 therapeutic	 index	 of	 a	 weak	 molecularly	
targeted	 drug	 like	 monastrol,	 we	 carried	 out	 an	 experiment	 where	
a	 human	 breast	 cancer	 xenograft	 was	 established	 in	 nude	 mice	
and	 treated	 with	 EGFR-targeted,	 monastrol-packaged	 minicells	
(EGFRminicellsMonastrol)	 and	 compared	 the	 anti-tumor	 effects	 with	
the	administration	of	free	monastrol.	Minicells	were	generated	from	
an	S. Typhimurium minCDE-	mutant	strain	and	were	purified	using	
gradient	 centrifugation/filamentation/filtration/endotoxin	 removal	
procedure	 as	 previously	 described.45	 Monastrol	 (Sigma-Aldrich,	
St.	 Louis,	 MO,	 USA) was packaged into the minicells by creating)	 was	 packaged	 into	 the	 minicells	 by	 creating	
a	 concentration	 gradient	 of	 monastrol	 between	 the	 extracellular	
and	 intracellular	 compartments	 and	 drug	 concentration	 packaged	
within	 minicells	 was	 determined	 by	 LC-MS/MS.	 An	 anti-O-poly-
saccharide/anti-human	EGFR	BsAb	was	constructed	by	linking	the	
Fc	parts	of	 the	 two	 respective	monoclonal	 antibodies	 (MAbs)	with	
protein	A/G.45	The	anti-EGFR	MAb	was	selected	because	the	target	
MDA-MB-468	 cells	 are	 known	 to	 over-express	 EGFR	 on	 the	 cell	
surface.	The	BsAb	was	used	to	coat	the	monastrol-packaged	minicells	
(minicellsMonastrol)	via	the	anti-O-polysaccharide	linkage	to	result	in	
EGFR-targeted,	 minicellsMonastrol	 (EGFRminicellsMonastrol).	 LC-MS/
MS	results	showed	that	�08	EGFRminicellsMonastrol	carried	~520	ng	of	
the	drug.	Balb/c	nu/nu	mice	were	purchased	from	Animal	Resources	
Centre	 (Perth,	 WA,	 Australia),	 and	 all	 animal	 experiments	 were	
performed	in	compliance	with	the	guide	of	care	and	use	of	laboratory	
animals	and	with	Animal	Ethics	Committee	approval.	Human	breast	
adenocarcinoma	 cells	 (MDA-MB-468,	 ATCC;	 human	 mammary	
epithelial	 cells)	were	 grown	and	 established	 as	 a	 xenograft	between	
the	shoulder	blades	of	each	mouse	and	tumor	volume	was	measured	
twice	a	week	as	previously	described.45	Eighteen	days	post-implan-
tation,	the	tumors	reached	~80mm3,	and	mice	were	randomized	to	
seven	different	groups	(n	=	8	per	group).

EGFRminicellsMonastrol	 treatment	of	 the	mice	was	compared	with	
non-targeted	minicellsMonastrol	and	free	monastrol	treatments	as	shown	
in	 Figure	 �A.	 The	 results	 showed	 a	 highly	 significant	 anti-tumor	
effect	 with	 EGFRminicellsMonastrol	 treatment	 (G7	 vs	 G�	 to	 G5;	
p	<	0.0004)	while	free	monastrol	and	non-targeted	minicellsMonastrol	
showed	no	anti-tumor	effects.	Failure	to	see	tumor	growth-inhibition	
with	minicellsMonastrol	corroborates	previous	results45	which	indicate	
that	 BsAb-mediated	 targeting	 is	 essential.	 The	 highly	 significant	
anti-tumor	effects	with	EGFRminicellsMonastrol	was	despite	a	240-fold	
lower	dose	of	monastrol	compared	to	free	drug	treatment	(compare	
groups	G6	or	G7	vs.	G2).

Thymidylate	synthase	(TS)	inhibitors	form	another	class	of	new	
targeted	 drugs	 in	 development.75-78	This	 effort	 has	 been	 necessary	
since	 first-line	cytotoxic	drugs	 for	metastatic	colorectal	cancer	 such	
as	5-Fluorouracil,	which	is	a	TS	inhibitor,79	suffers	from	drawbacks	
of	 severe	 toxicity	 and	 rapid	 development	 of	 drug	 resistance.	 TS	
expression	has	been	reported	to	be	cell	cycle	dependent80,8�	and	its	
activity	 levels	 are	higher	 in	proliferating	 cells	 than	 in	non-prolifer-
ating	cells.82

OSI-7904L	is	the	liposomal	formulation	of	OSI-7904	[(S)-2-[5-[�
,2-dihydro-3-methyl-�-oxobenzo[f]quinazolin-9-yl)methyl]amino-�-
oxo-2	isoindolynl]-glutaric	acid],	a	potent	selective	non-competitive	
TS	 inhibitor.	 It	 consists	 of	 small	 (20-80	 nm)	 unilamellar	 vesicles	
containing	 OSI-7904	 within	 their	 aqueous	 cores.	 The	 liposomal	
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encapsulation	greatly	increases	plasma,	tissue	and	tumor	exposure	to	
OSI-7904.83

We	carried	out	a	xenograft	 study	 in	nude	mice	 (n	=	8	mice	per	
group)	to	compare	the	anti-tumor	effects	of	free	OSI-7904,	liposo-
mally	encapsulated	OSI-7904	(OSI7904L;	both	a	kind	gift	from	Neil	

Gibson,	 OSI	 Pharmaceuticals	 Inc.,	 Melville,	 NY,	 USA)	 and	 either	
EGFR-targeted	or	non-targeted	minicells	packaged	with	OSI-7904	
(designated	EGFRminicellsOSI-7904	and	minicellsOSI-7904	respectively).	
Since	circulating	levels	of	thymidine	in	rodents	is	relatively	high,84	it	can	
ameliorate	the	cytotoxicity	of	TS	inhibitors.	To	bypass	the	thymidine	

Figure 1. �nhibition�regression of tumor growth in mice treated with receptor‑targeted minicells packaged with molecularly targeted drugs. ���� Human�nhibition�regression of tumor growth in mice treated with receptor‑targeted minicells packaged with molecularly targeted drugs. ���� Human 
breast cancer �MD�‑MB‑468�� xenografts in Balb�c nu�nu mice �n = 8 per group�� treated with free monastrol �G2 to G4��, non‑targetedminicellsMonastrol �G5�� or 
EGFRminicellsMonastrol �G6 and G7��. �ll doses were administered via a tail vein injection. �ll minicell treatments received 108 minicells per dose. The result 
shows mean tumor volume �y‑axis�� in various groups of mice vs. days post‑establishment of tumor xenografts �x‑axis��. �B�� Human colon cancer �HT29�� xeno‑
grafts in Balb�c nu�nu mice �n = 8 per group�� were administered i.v. with the various treatments shown in the figure. �ll minicell treatments received 108 
minicells per dose. Treatment days are shown below the x‑axis �red triangles��. Error bars for both graphs; ± SEM.
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salvage	pathway,	efficacy	 studies	 in	 rodents	are	often	performed	by	
intraperitoneal	 (i.p.)	 administration	 of	 thymidine	 phosphorylase,	
which	lowers	circulating	thymidine	levels	by	metabolizing	thymidine	
to	 thymine	 and	 deoxyribose-5-phosphate.	Therefore,	 in	 this	 study	
we	 also	 included	 additional	 treatment	 groups	 of	 free	 OSI-7904,	
OSI-7904L	and	EGFRminicellsOSI-7904	where	thymidine	phosphory-
lase	was	administered	i.p.	(Fig.	�B,	Groups	2,	4	and	6	respectively).

The	 study	was	carried	out	 in	HT29	human	colon	cancer	xeno-
grafts	 and	 tumors	were	 allowed	 to	grow	 to	200	mm3	 to	250	mm3	
before	the	various	treatments	were	administered	i.v.	via	the	tail	vein.

The	 results	 showed	 (Fig.	 �B)	 a	 highly	 significant	 anti-tumor	
effect	 following	 EGFRminicellsOSI-7904	 treatment	 (G7	 mice).	
Additionally,	 the	 anti-tumor	 effects	 were	 identical	 in	 mice	 treated	
with	 EGFRminicellsOSI-7904	or	 EGFRminicellsOSI-7904	with	 thymidine	
phosphorylase	 (G7	 and	 G6	 mice	 respectively).	 This	 is	 in	 contrast	
to	the	groups	treated	with	free	OSI-7904	where	some	reduction	in	
tumor	 growth	 rate	 was	 only	 seen	 in	 the	 thymidine	 phosphorylase	
pre-treated	 group	 (G2	 vs	 G3	 mice).	 Presumably,	 since	 the	 drug	
was	 encapsulated	 in	 the	 minicells	 and	 only	 released	 intracellularly,	
the	 EGFRminicellsOSI-7904	 treatment	 may	 not	 be	 subject	 to	
circulating	 levels	 of	 thymidine	 and	 hence	 the	 thymidine	 salvage.	
OSI-7904L	 formulation	was	effective	 in	 stabilizing	 tumour	growth	
but	 not	 as	 effective	 as	 EGFRminicellsOSI-7904.	 More	 importantly,	
EGFRminicellsOSI-7904	was	more	effective	(G7	mice,	260	ng	drug/dose)	
at	 a	 dose	 that	 was	 ~385-fold	 less	 than	 the	 liposomal	 formulation	
OSI-7904L	(G4	mice,	�00,000	ng	drug/dose).	The	minicell	delivery	
vector	thus	dramatically	increased	the	therapeutic	index.

AMeLiorAtioN of toxicity usiNg MiNiceLLs 
As A tArgeteD DeLivery vector

Minicells are stable, and can be targeted to cancer cells in vivocells	 are	 stable,	 and	 can	 be	 targeted	 to	 cancer	 cells	 in	 vivo	
with	 high	 specificity	 and	 can,	 thus,	 be	 delivered	 in	 high	 concen-
tration	 in	 vivo	 without	 toxicity.	This	 was	 evident	 by	 the	 lack	 of	 a	
febrile	response,	weight	loss,	or	skin/fur	changes	etc.	in	the	murine	
xenograft	model.	Importantly,	minicells	were	well	tolerated	with	no	
adverse	side-effects	or	deaths	 in	any	of	the	actively-treated	animals,	
despite	repeat	dosing.

Since	minicells	are	of	bacterial	origin,	it	is	necessary	to	be	cautious	
with	systemic	administration	as	bacterial	products	are	known	to	elicit	
potent	 inflammatory	 responses	activated	by	Toll-like	 receptors.85	A	
minicell	purification	procedure	to	eliminate	free	endotoxin	and	free	
bacterial	components	has	been	developed	to	minimize	the	potential	
for	toxic	side	effects.45

Interestingly,	 in	 the	 two	 dogs	 and	 three	 pigs	 studied	 only	 the	
latter	demonstrated	 a	 very	 short	 lived	 and	mild	TNFa	 response.45	
This	contrasts	with	TNFa	 levels	 as	high	as	20,000	pg/ml	after	 i.v.	
injection	of	2	mg/kg	LPS	in	pigs.86	Neither	a	TNFa	response	nor	an	
increase	in	IL-6,	another	inflammatory	cytokine,	was	observed	in	the	
tumor-bearing	dogs	despite	repeat	i.v.	administration	of	high	doses	of	
minicells.	Additionally,	neither	the	pigs	or	the	dogs	showed	adverse	
effects	 in	 terms	 of	 their	 hematological	 indices,	 serum	 chemistries,	
body	weight,	temperature,	urine	analysis,	food	intake	or	growth.

O-polysaccharide	 is	 the	 main	 antigen	 exposed	 on	 the	 minicell	
surface	 and	 it	 is	 well	 recognized	 from	 the	 large	 body	 of	 work	 on	
bacterial	 vaccines	 that	 during	 natural	 or	 experimental	 infections	
with	 Gram	 negative	 bacteria,	 anti-O-polysaccharide	 humoral	 anti-
body	 response	 is	 predominant87-89	 and	 is	 a	 T-cell	 independent	
response.90,9�	 Yet	 surprisingly,	 the	 anti-O-polysaccharide	 antibody	
titers	remained	at	background	levels	despite	repeat	administration	of	

the	CD3minicellsDox.
45	It	is	well	recognized	that	in	late	stage	cancer,	

the	immune	system	is	partly	compromised92,93	and	this	may	account	
for	 the	 absence	 of	 an	 anti-O-polysaccharide	 antibody	 response	 in	
these	dogs.	Although	case	studies	in	the	two	dogs	is	very	encouraging,	
the	data	is	anectodal	and	further	dog	clinical	trial	studies	would	be	
required.

coNcLuDiNg reMArKs
These	anucleate	minicells	 can	be	 readily	produced	 in	high	yield	

from	both	Gram+	and	Gram-	organisms	and	purified	free	of	parental	
bacteria,	 membrane	 blebs,	 nucleic	 acids,	 cellular	 debris	 and	 free	
endotoxin,	using	commercially	available	filters.

In	recent	work,	we	have	tested	the	Dox-packaged,	monkey-EGFR-	
targeted	minicells	 in	60	rhesus	monkeys	(two	full	 toxicology	trials)	
and	these	minicells	were	administered	via	the	i.v.	route	in	five	repeat	
doses	 (weekly)	 and	 in	 escalating	 concentrations.	 Extensive	 analysis	
of	 various	 parameters	 revealed	 no	 signs	 of	 toxicity	 despite	 doses	
of	 minicells	 as	 high	 as	 2	 x	 �0�0	 (manuscript	 in	 preparation).	This	
data	is	highly	encouraging	for	the	potential	progression	into	human	
studies.

The	 use	 of	 molecularly	 targeted	 minicell	 nanovectors	 affords	
multiple	potential	advantages	over	conventional	cancer	therapy,	some	
of	 which	 include;	 (a)	 the	 ability	 to	 easily	 package	 therapeutically	
significant	 concentrations	 of	 different	 cytotoxic	 or	 molecularly	
targeted	 drugs	 into	 the	 minicell,	 (b)	 the	 ability	 to	 readily	 attach	
different	BsAbs	on	the	minicell	surface	in	order	to	target	a	receptor	
found	on	the	surface	of	a	tumor	cell	i.e.,	ability	to	target	many	different	
solid	tumors,	(c)	the	ability	to	deliver	the	drug	intracellularly	within	a	
tumor	cell	and	without	leakage	of	drug	from	the	vector	during	systemic	
circulation,	(d)	the	ability	to	provide	a	dramatic	increase	in	the	thera-
peutic	index	with	minimal	to	no	toxic	side	effects.	This	also	enables	
the	use	of	potent	cytotoxics	that	have	failed	toxicity	trials	but	have	
the	potential	to	be	highly	potent	anti-cancer	drugs,	(e)	minicells	are	
easily	purified	to	homogeneity	and	the	long	standing	pharmaceutical	
industry	 experience	 in	 bacterial	 fermentation	 and	 production	 of	
bacterial	 vaccines	 shows	 that	 such	 processes	 are	 relatively	 cheap.	
Currently	 there	 is	 considerable	 international	 pressure	 to	make	 life-
saving	 medicines	 like	 anti-cancer	 therapies	 more	 affordable94	 	 but	
the	very	high	cost	of	goods	to	make	such	medicines	e.g.,	monolonal	
antibodies,	makes	it	very	difficulty	for	pharmaceutical	companies	to	
meet	 such	 demands.	The	 minicell	 nanovector	 has	 the	 potential	 to	
significantly	reduce	cost	of	goods	particularly	since	a	minicell-based	
anti-cancer	 therapeutic	 would	 carry	 tiny	 fractions	 of	 the	 drug	 and	
the	 targeting	 antibody	 compared	 to	 free	 drug	 or	 free	 antibody	
therapy,	(f )	intra-cytoplasmic	drug	delivery	may	also	partly	overcome	
obstacles	in	anticancer	therapy	such	as	multi-drug	resistance.
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